Qual é a quantidade de matéria de gás oxigênio necessária para fornecer 17 5 mol de água H 2 O V na queima completa do acetileno C 2 H 2 g?

Índice

Introdução

A estequiometria trata do estudo das relações entre as quantidades de reagentes e/ou produtos em uma reação química. Essas relações podem ser feitas em termos de massa, mol, número de moléculas, volume, etc.

O estudo da estequiometria é baseado nas Leis das combinações químicas, propostas no século XVIII por Lavoisier, Proust e Gay-Lussac. Essas leis foram divididas em dois grupos:

  • Leis ponderais: relacionam as massas dos participantes de uma reação.
  • Lei volumétrica: relaciona os volumes dos participantes de uma reação.

📚 Você vai prestar o Enem 2020? Estude de graça com o Plano de Estudo Enem De Boa 📚

Leis Ponderais

Lei da Conservação das Massas

A Lei da Conservação das Massas foi proposta por Antoine Laurent Lavoisier por volta de 1775 e é enunciada da seguinte forma:

Na natureza, nada se cria, nada se perde, tudo se transforma.

Ou seja, em uma reação química, a matéria não é criada e nem destruída.

A conclusão é: em um sistema fechado, a massa total dos reagentes é igual à massa total dos produtos.

A + B → C + D

mA + mB = mC + mD

Por exemplo, na obtenção do sulfeto de prata a partir de prata e enxofre teremos:

Prata (215,8 g ) + Enxofre (32,1 g) → Sulfeto de prata (247,9 g)

215,8 g + 32,1 g = 247,9 g

247,9 g = 247,9 g

Lei das Proporções Definidas

A Lei das proporções definidas foi proposta por Joseph Louis Proust em 1799 e é enunciada da seguinte forma:

Toda substância apresenta uma proporção em massa constante na sua composição.

Por exemplo, a água será sempre formada por 11,1% em massa de hidrogênio e 88,9% em massa de oxigênio:

Água → Hidrogênio + Oxigênio

100%              11,1%             88,9%

100 g              11,1 g              88,9 g

Assim, a composição da água, para qualquer massa de água, terá sempre a mesma relação entre as massas de hidrogênio e oxigênio:

Qual é a quantidade de matéria de gás oxigênio necessária para fornecer 17 5 mol de água H 2 O V na queima completa do acetileno C 2 H 2 g?
Relação entre as massas de hidrogênio e oxigênio:

Portanto, na formação da água sempre combinamos hidrogênio e oxigênio na proporção em massa de 1 para 8. Dessa forma, reagindo 1 g de hidrogênio com 8 g de oxigênio, obteremos 9 g de água. Observe a tabela abaixo com dois experimentos ilustrando a Lei das proporções definidas:


   Hidrogênio               +          Oxigênio         →        Água
Proporção      1       : 8       :          9
Experimento 1         10 g    +          80 g   →          90 g
Experimento 2        5 g     +           40 g   →          45 g

Lei Volumétrica de Gay-Lussac

A Lei da combinação de volumes foi publicada por Gay-Lussac em 1808 e é enunciada da seguinte forma:

Nas mesmas condições de pressão e temperatura, os volumes dos gases participantes de uma reação química têm entre si uma relação de números inteiros e pequenos.

Observe a reação entre o gás hidrogênio (H2) e o gás nitrogênio (N2) gerando amônia (NH3).

Tabela de proporções.

Antes de aplicar cada uma dessas leis em uma reação química, devemos nos certificar de que a equação química está corretamente balanceada.

🎓 Você ainda não sabe qual curso fazer? Tire suas dúvidas com o Teste Vocacional Grátis do Quero Bolsa 🎓

Resolvendo Problemas de Estequiometria

Primeiro, é preciso saber que:

Mol é o número de Avogadro (6,02 x 1023 partículas). Massa molar é a massa, em gramas, de 1 mol de moléculas e é numericamente igual à massa molecular da substância. 1 mol de qualquer gás, nas condições normais de temperatura e pressão (CNTP, 0°C e 1 atm), ocupa o volume de 22,4 litros.

Assim:

Equivalência de 1 Mol.

Sabendo disso, vamos aprender os passos para resolver os problemas envolvendo estequiometria. Há 3 passos para se resolver os problemas:

  • Escrever a equação química da reação envolvida no problema.
  • Acertar os coeficientes estequiométricos da reação, através do balanceamento, obedecendo à Lei de Lavoisier.
  • Estabelecer uma regra de três entre as grandezas envolvidas (o que se pede e os dados).
  • Converter, se necessário, o número de mol para outra grandeza (massa, volume, número de moléculas, etc.).

Conhecendo as massas atômicas do carbono (C = 12) e do oxigênio (O = 16), podemos interpretar a equação de formação do gás carbônico das seguintes maneiras:

Proporção em       2 CO (g)   + 1 O2 (g)     →2 CO2 (g)
Mol       2 mol                1 mol                2 mol
Massa           2 x 28 = 58 g    1 x 32 = 32 g     2 x 44 = 88 g
Volume (gases)             2 x 22,4 = 44,8 L           1 x 22,4 = 22,4 L        2 x 22,4 = 44,8 L
Moléculas             2 x 6,02 x 1023 =         1 x 6,02 x 1023 =         2 x 6,02 x 1023 =          12,04 x 1023                   6,02 x 1023                     12,04 x 1023

Além da Lei de Lavoisier, não podemos esquecer da Lei de Proust para resolver os problemas estequiométricos. Esta lei afirma que as substâncias reagem em proporções fixas e definidas. Por exemplo, sabemos pela tabela acima, que 58 g de CO sempre reagirão com 32 g de O2, 116 g de CO reagirão com 64 g de O2, 174 g de CO reagirão com 96 g de O2, e assim por diante.

Assim, se 80 g de CO forem colocados para reagir com 32 g de O2, apenas 58 g de CO reagiriam. A massa em excesso de CO será (80 – 58) = 22 g. Podemos dizer, então, que o CO está em excesso e que o O2 é o reagente limitante, pois é totalmente consumido e é quem determina o fim da reação.

Observe o exemplo:   

Considere a equação balanceada:

N2 (g) + 3 H2 (g) → 2 NH3 (g)

Relacionando mol com mol

Calcular o número de mol de amônia produzido na reação de 5 mol de gás nitrogênio com quantidade suficiente de gás hidrogênio.

   N2 (g) + 3 H2 (g) → 2 NH3 (g)

 1 mol ---------------- 2 mol

 5 mol ---------------- x

x = (5 mol x 2 mol) / 1 mol → x = 10 mol de NH3

Relacionando mol com massa

Determinar a massa de amônia produzida na reação de 5 mol de gás nitrogênio com quantidade suficiente de gás hidrogênio. Dado: massa molar do NH3 = 17 g/mol.

   N2 (g) + 3 H2 (g) → 2 NH3 (g)

 1 mol ---------------- 2 mol

 1 mol ---------------- 2 mol x 17 g/mol

 5 mol ---------------- x

x = (5 mol x 34 g) / 1 mol → x = 10 mol de NH3

Relacionando massa com massa

Calcular a massa de amônia produzida na reação de 140 g de gás nitrogênio com quantidade suficiente de gás hidrogênio.

Dado: massas molares: NH3 = 17 g/mol; N2 = 28 g/mol.

   N2 (g) + 3 H2 (g) → 2 NH3 (g)

 1 mol ---------------- 2 mol

            1 mol x 28 g/mol -------- 2 mol x 17 g/mol

 140 g ---------------- x

x = (140 g x 34 g) / 28 g → x = 170 g de NH3

Relacionando grandezas com volume

Determinar o volume de amônia, nas CNTP, produzida na reação de 140 g de gás nitrogênio com quantidade suficiente de gás hidrogênio.

Dado: massa molar do N2 = 28 g/mol; volume molar do NH3 nas CNTP = 22,4 L/mol.

   N2 (g) + 3 H2 (g) → 2 NH3 (g)

 1 mol ---------------- 2 mol

  28 g ---------------- 2 mol x 22,4 L/mol

 140 g --------------- x

x = (140 g x 44,8 L) / 28 g → x = 224 L de NH3

Relacionando massa ou mol com número de moléculas

Calcular o número de moléculas de amônia produzida na reação de 4 mol de gás nitrogênio com quantidade suficiente de gás hidrogênio.

   N2 (g) + 3 H2 (g) → 2 NH3 (g)

 1 mol ---------------- 2 mol

                     1 mol ---------------- 2 x 6,02 x 1023 moléculas

  4 mol ---------------- x

x = (4 mol x 2 x 6,02 x 1023 moléculas) / 1 mol

                               x = 4,816 x 1024 moléculas de NH3     

🎯 Simulador de Notas de Corte Enem: Descubra em quais faculdades você pode entrar pelo Sisu, Prouni ou Fies 🎯

Reações Químicas com Substâncias Impuras

Na maioria das vezes, os reagentes utilizados apresentam certa porcentagem de impurezas. Assim, temos que levar o grau de pureza das substâncias ao realizarmos cálculos estequiométricos.

O grau de pureza (p) é dado pela razão entre a massa de substância pura (mpura) e a massa total da amostra (mtotal), mostrado na Equação 1.

Por exemplo, digamos que, em 100 g de calcário, apenas 80 g são de carbonato de cálcio e 20 g são de impurezas, então o grau de pureza será:

Assim, quando formos calcular a massa de produto obtido a partir de um reagente impuro teremos que calcular qual a parte pura da amostra antes e, depois, realizar os cálculos estequiométricos com o valor obtido. No caso acima, temos que considerar que apenas 80 g do carbonato de cálcio irão reagir.

Exemplo: Uma amostra de 120 g de magnésio com 80% de pureza reage com oxigênio, produzindo óxido de magnésio. Determine a massa de óxido de magnésio produzida.

Dados: Massas molares: Mg = 24 g/mol; MgO = 40 g/mol.

2 Mg (s) + O2 (g) → 2 MgO (s)

Solução:

120 g é a massa total da amostra e corresponde a 100%. Nessa amostra, somente 80% da massa total é magnésio. Logo:

120 g ---- 100%

x ---------- 80%

x = (80% x 120 g) / 100% → x = 96 g de Mg (s)

Determinada a massa de magnésio na amostra, podemos calcular a massa do produto formado:

2 Mg (s) + O2 (g) → 2 MgO (s)

                       2 mol    1 mol               2 mol

                    2 x 24 g ---------------- 2 x 40 g

                        96 g ---------------------- y

y = (96 g x 80 g) / 48 g → y = 160 g de MgO (s)

Rendimento de uma Reação Química

Quando a massa total dos reagentes é convertida em produto, a reação teve 100% de rendimento. Esse valor é chamado de rendimento teórico. Porém, na maioria das reações químicas realizadas, os reagentes não são totalmente convertidos em produtos, ou seja, a quantidade de produto obtida é menor que a quantidade esperada teoricamente.

Isso significa que o rendimento real da reação não é igual a 100%. O rendimento real (R) é calculado em termo da quantidade de produto realmente obtida em uma reação e a quantidade que teoricamente seria obtida, da seguinte forma:

Quantidade teórica -------- 100%

Quantidade real --------- R

Para determinar a porcentagem de rendimento real, devemos primeiro determinar o rendimento teórico, a partir das quantidades estequiométricas.

Exemplo: Sabendo que a formação da água ocorre segundo a equação:

2 H2 (g) + 1 O2 (g) → 2 H2O (v)

Determine o rendimento real de um experimento onde 2 g de hidrogênio reagiram com 16 g de oxigênio, produzindo 14,4 g de água.

Dados: Massas molares: H2 = 2 g/mol; O2 = 32 g/mol; H2O = 18 g/mol.

Solução:

2 H2 (g) + 1 O2 (g) → 2 H2O (v)

                                        2 mol      1 mol       2 mol

                                        2 x 2 g     32 g       2 x 18 g

                                                      2 g          16 g         x

x = 18 g

Assim, seriam obtidos 18 g de água se o rendimento fosse igual a 100%. Porém, a massa real de água que foi produzida foi de 14,4 g. Assim, o rendimento real é:

18 g ---- 100% de rendimento

14,4 g --------- Rendimento real

Rendimento real = 80%

Fórmulas

Equação 1:

Equação 2:

Exercício de fixação

ENEM/2004

Em setembro de 1998, cerca de 10.000 toneladas de ácido sulfúrico (H2SO4)

foram derramadas pelo navio Bahamas no litoral do Rio Grande do Sul. Para minimizar o impacto ambiental de um desastre desse tipo, é preciso neutralizar a acidez resultante.

Para isso pode-se, por exemplo, lançar calcário, minério rico em carbonato de cálcio (CaCO3), na região atingida.

A equação química que representa a neutralização do H2SO4 por CaCO3, com a proporção

aproximada entre as massas dessas substâncias é:

H2SO4 + CaCO3 → CaSO4 + H2O + CO2

1 tonelada reage com 1 tonelada → sólido sedimentado e gás

Pode-se avaliar o esforço de mobilização que deveria ser empreendido para enfrentar tal situação, estimando a quantidade de caminhões necessária para carregar o material neutralizante. Para transportar certo calcário que tem 80% de CaCO3, esse número de caminhões, cada um com carga de 30 toneladas, seria próximo de:

A 100

B 200

C 300

D 400

E 500

Qual é a quantidade de matéria de gás oxigênio necessária para fornecer 17 5 mol de água h2oh na queima completa do acetileno?

Qual é a quantidade de matéria de gás oxigênio necessária para fornecer 17,5 mol de água, H2O(v), na queima completa do acetileno, C2H2(g)? Quantas moléculas de água, H2O(v), são obtidas na queima completa do acetileno C2H2(g), ao serem consumidas 3,0 . 1024 moléculas de gás oxigênio? Alternativa “b”.

Qual é a massa de gás oxigênio necessária para fornecer 10 mol de água h20 V na queima completa do acetileno C2H2 g )? Dados massa molar do 02 32g mol?

Qual é a massa de gás oxigênio necessária para fornecer 10 mol de água, H2O(v), na queima completa do acetileno, C2H2(g)? Dados: massa molar do O2 (32g/mol) a) 700g.

Qual é a quantidade de matéria de gás oxigênio necessária para fornecer 35 mol de água H2O V na queima completa do acetileno C2H2 g )?

Qual é a quantidade de matéria de gás oxigênio necessária para fornecer 35mols de água, H2O(v). na queima completa do acetileno, C2H2(g)? 2 C2H2(g) +5 O2(g) > 4 CO2(g) + 2 H2O(v)​

Qual a quantidade de matéria de oxigênio?

Importância da sua existência.